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Abstract

Due to diversity in languages in India and lack of support for Indic languages in digital and
physical keyboards, a common phenomenon, especially in online modes of communication,
is the utilization of the roman script for Indic languages. This form of transliteration is
quite common. As such, identification of the root language which is being transliterated
can have many potential uses in translation, messaging, and search systems. It is therefore
necessary to develop a rapid, accurate, and light model for the purpose of this detection.
This paper presents an exploration of various standard textual classification techniques to
achieve such a model. The paper is focused on 4 Devanagari languages: Hindi, Gujrati,
Mahrati and Sindhi. The machine learning models tested were a Multinomial Näıve-Bayes
algorithm, along with a Recurrent Neural Network and a Convolutional Neural Network.
The highest accuracy achieved was 97.3%.

Keywords: Natural Language Processing, Script Identification, RNN, LSTM, Translit-
eration

1. Introduction

In sociolinguistics, transliteration is the representation of words and phrases of one lan-
guage by the alphabets, script or notations of another language, while keeping the original
pronunciations intact, Chatterjee (2017). Transliteration is most common when documen-
tation/ communication is limited to the script of a certain language, and thus expression in
all other languages is forced to occur in that same script.

Roman or Latin script is the alphabetic writing system evolved from the Latin language,
used for reading and writing predominantly in Western European languages. It is the most
adopted writing system in the world, Chanda et al. (2010) Devanagari is used as writing
and reading script, which is extensively spread over a wide belt of India. Devanagari is used
to write many languages of India, such as, Sanskrit, Hindi, Marathi, Rajasthani, Sindhi,
Prakrit, Konkani and Nepali, Ajmire and Warkhede (2018)

Despite the popularity of Devanagari script languages, the script itself has not pen-
etrated significantly online, a20 (2019). Instead, majority of internet communication of
Indic languages occurs in transliterated form. This can be attributed to two main reasons.
Firstly, there are very few digital and physical keyboards which support Devanagari script,
which makes typing messages, documents, e-mails, etc. difficult in the script in the ab-
sence of external provisions, Joshi et al. (2011). Moreover, since Devanagari is a phonetic
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language, there are far more unique alphabets (48) compared to roman script (only 26),
Mhaiskar (2014). This makes even simple sentences more complex to write in Devanagri as
compared to Roman script. As a result, Devanagari languages are often transliterated to
roman script. Detection of the root form of the text can have many purposes, especially
in the field of translation, text-to-speech and optical character recognition (OCR), where
knowledge of the root language can allow for faster processing.

This paper investigates various approaches to accurately detect four Devanagari lan-
guages — Hindi, Gujrati, Mahrati and Sindhi. The models utilized include a simple Näıve-
Bayes algorithm, a recurrent neural network (RNN) with a bidirectional Long short-term
memory (LSTM), and a convolutional neural network (CNN).

The rest of the paper is structured as such: Section II reviews the existing detection
techniques, Section III details the data used in the study, and Section IV details the pro-
posed detection algorithms and text-processing. Finally, Section V reports the experimental
testing results and a discussion of the same. The paper is concluded by Section VI.

2. Existing Techniques

Jacob et al. (2014) introduces an autonomous system for detection of Hindi, Malayalam,
and Bengali all in romanized script using SVM regression. Adouane et al. (2016) presents a
language automatic identifier for both Romanized Arabic and Romanized Berber including a
wide range of Arabic dialects as well as the most popular Berber varieties through prediction
by Partial Matching (PPM) and dictionary-based methods. The methods reach a macro-
average F-Measure of 98.74% and 97.60% respectively. Sharma et al. (2018) suggests an
approach to identify text-based content written in Roman script which conveys meaning
in Hindi language. This is done through an artificial neural network(ANN) whose ouptput
is fed through a autoencoder and a semi-supervised generative adversarial network(GAN).
Bangalore (2014) presents N-grams model for romanized Kannada and Hindi with 80.4%
accuracy.

3. Data Acquisition

For training, testing, and validation, the Dakshina Dataset was used proposed by Roark
et al. (2020). This dataset is a collection of text in both Latin and native scripts for 12
South Asian languages. For each language, the dataset includes a large collection of native
script text extracted from public source, a romanization lexicon which consists of words in
the native script with attested romanizations, and some full sentence parallel data in both
a native script of the language and the basic Latin alphabet. The dataset is summarized
below in Table 1.

Thus, there are approximately 10,000 sentences for each language to be trained on, with
an average of approximately 15 words per sentence, and a total of 164,755 words. For the
combined dataset, the summary of the number of words in each sentence can be seen below
in Figure 1.

As can be seen, for the chosen corpus, the sentences generally contain between 10-20
words, with an upper quartile of 20. This is significant for later, when the size of the tensors
and neural network layers is chosen.
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Table 1: summary of training dataset (Dakshina)
Language

Features Gujrati Hindi Marathi Sindhi

Total Size
(Sentences)

9,981 9,744 9,969 9,868

Total Words 153,506 176,392 97,977 184,606

Unique Words 49,620 37,124 38,536 39,475

Average words / sentence 15.38 18.10 9.82 18.71

Figure 1: The distribution of words per sentence in chosen corpus

4. Model Selection and Training

Three models were trained on the dataset for the purposes of language classification. They
were: Multinomial Naive Bayes, a Recurrent neural network, and a Convolutional neural
network. The pre-processing, training, validation and testing of all 3 models was conducted
on a system with 16 gigabytes of memory, with 8 cores clocked at 3228 MHz.

To normalize the data, the following steps of text preprocessing were carried out to the
base corpus:

1. All non-Latin character words, numbers and punctuation were removed.

2. Excess white space was removed

3. All text was made lower-case

4.1 Multinomial Näıve-Bayes

The Multinomial Näıve Bayes model was chosen as the simplest model of the three used,
relying on probabilistic measures as opposed to deep-learning, Pedregosa et al. (2011)

4.1.1 Pre-processing

Prior to training, model-specific pre-processing was required. First, the entire corpus was
converted to a n-gram model, using a count-vectorizer, i.e. the model was trained with the
vocabulary of the dataset and the text corpus was mapped to a numerical entry in the learnt
vocabulary. For each such ‘bag of n-gram’ representation, the weightage of words was also
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accounted for using a term frequency(tf) -inverse document frequency (idf) transformation.
The combined formula for tf-idf for a given word x is given as:

tf − idf = tfx × log(
N

dfx
) (1)

Where, tfx is the frequency of the word x in the entire corpus, N is the total number
of sentences and dfx is the number of sentences containing the word x.

4.1.2 Model Definition

After the data was pre-processed, it was fit to a probabilistic Multinomial Näıve Bayes
model, defined by the following formula:

P (c|wk ) =
P (wk|c) × P (C)

P (wk)
(2)

P (c|W ) = P (C)

k=n∏
1

P (wk|c)
P (wk)

(3)

Where, P (c|wk) gives the (posterior) probability that a word wk falls in the category c ,
while in equation three this posterior probability is shown for a set of words W i.e. a set of
words W consisting of features wk for all k ∈ Z, 1− n such that P (c|W ) is representative
of P (c|W ) = P (c|w1 ∩ w2 ∩ w3....wn). The Multinomial Näıve Bayes model was tested on
the metric of accuracy.

4.2 Recurrent neural network

A recurrent neural network (RNN) was trained on the dataset as well. The RNN allows for
a bidirectional model, such that the output from step of the learning/ predicting process
can be utilized as the the input for the next step, Sherstinsky (2018)

4.2.1 Pre-processing

To train the the RNN, the data was split into training and validation datasets (80:20), and
pre-processed again. A tokenizer was fit on the training data with a vocabulary size of
90,000 to limit size of the network tensors while being near the number of unique words
in the chosen corpus (164,000 unique words). The tokenizer was used on both training
and validation data. Each sample (a sentence) was limited to a maximum of 25 words,
around the upper quartile of the corpus, with smaller sentence being padded. As a result,
embedding dimension of the layers of the neural network was taken as 25.

4.2.2 Network Layers

The RNN itself was trained with 4 layers as reflected in Figure 2. The first embedding/
input layer accepts tensor inputs of the shape equivalent to the vocabulary size set for
the tokenizer and returns an output to the next bidirectional layer with an embedding
dimension of 25. The Biderictional LSTM(Long short-term memory) layer allows for the
recurrent nature of the model, capable of learning order dependence in sequence prediction,
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Hochreiter and Schmidhuber (1997). The ReLU (Rectified Linear Unit) activation layer
normalizes all the node outputs from the LSTM. It outputs the input from the LSTM
layer directly if it is positive. Else, it outputs zero. ReLU, unlike the sigmoid and tanh
activation prevents saturation and vanishing gradient. Lastly, the softmax layer converts
the layer output to probabilities for each class. The RNN was trained with sparse categorical
crossentropy loss function, with adam optimizer, and accuracy as the testing metric. To
summarize, the RNN model has four layers, the embedding layer (input layer), the LSTM,
the ReLU and the softmax.

Figure 2: Layers of Recurrent Neural Network

4.2.3 Model Parameters

The model’s hyper-parameters were tuned on the basis of analysis of text corpus as well
as through the testing process. Embedding dimensions of each model were kept at 25
which was the upper quartile of words/ sentence in the dataset. The vocab size was kept
as 90,000 words to ensure a good learning of the corpus ( 170,000 words) while preventing
over-fitting. LSTM layer dropout was 0.2 to ensure optimal compromise between preventing
model over-fitting and retaining model accuracy. The number of epochs was kept at 10.

The loss function chosen was sparse categorical crossentropy, to account for the multiple
language classes which are represented by integers (0,1,2,3 respectively) as opposed to one-
hot encoded vectors. One advantage of using sparse categorical cross entropy is time saved in
memory as well as computation due to use of a single integer for a class, rather than a whole
vector. The RNN was trained with Adam optimizer since it has little memory requirements
and is efficient with the sparse text and class vectors. The training and testing metric was
accuracy. All model parameters are summarized in the table below:

4.3 Convolutional neural network

A convolutional neural network (CNN) was trained on the dataset as well. CNN is usu-
ally not preferred over RNN for text applications due to ability of RNN to interpret the
reversability of data/ corpus. However, the advantages of CNN such as higher feature com-
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Table 2: RNN Hyper-parameters
Hyper-parameter Selection/ Value

Embedding Dimensions 25

Vocabulary Size 90,000 words

LSTM Dropout 0.2

Epochs 10

Loss Function Sparse Categorical Crossentropy

Optimizer Adam

Metric Accuracy

patibility, and feed-forward processing may present higher accuracies in case of language
detection.

4.3.1 Pre-processing

The pre-processing is the same for the CNN as for the RNN. Seed was also kept constant
to ensure the training points were constant. Embedding dimmensions and vocabulary size
were also kept the same.

4.3.2 Network Layers

The CNN consisted of 5 layers, which are summarized in Figure 3. The first layer of
the CNN was kept same— an embedding/ input layer for the following convolution. The
convolutional layer used creates a convolution kernel that is convolved with the layer input
over a single dimension to produce a tensor of outputs, Ghosh et al. (2020). The subsequent
pooling layer progressively reduces the spatial size of the input image, so that number of
computations in the network are reduced. The last two layers of normalization—ReLU and
Softmax— are also kept constant.

Figure 3: Layers of Convolutional Neural Network
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4.3.3 Model Hyper pramaters

The CNN’s hyper-parameters were largely same. Embedding dimensions of each model
were kept at 25 and the vocab size was kept as 90,000 words. LSTM layer dropout was 0.2
to ensure optimal compromise between preventing model over-fitting and retaining model
accuracy. The number of epochs was kept at 20. The default activation of the convolutioned
layer was ’Relu’.The CNN was compiled on the same loss function with sparse categorical
crossentropy, with the same Adam optimizer, and same testing metric of accuracy.

Table 3: CNN Hyper-parameters
Hyper-parameter Selection/ Value

Embedding Dimensions 25

Vocabulary Size 90,000 words

Activation Relu

Epochs 20

Loss Function Sparse Categorical Crossentropy

Optimizer Adam

Metric Accuracy

5. Results

5.1 Training and Validation Results

The training of the models was done on a subset of 5000 samples from the Dakshinayan
Dataset, with a 80:20 split between validation and testing.

The training of the Multinomial Näıve-Bayes was fastest, with a training time of less
than 1 second. The RNN on the other hand took longest to train due to the large number
of parameters to train each layer on. The training time over 20 epochs was 15.7 minutes
or 942 seconds (at 47.1s per epoch). The training accuracy was 99.6%. In contrast, the
CNN was trained much faster since its feed-forward. The model was trained in 1 minute
39 seconds for 10 epochs at a rate of 9.9 seconds per epoch. The CNN achieved a training
accuracy of 97.3%. The training results for all three models are summarized below.

Table 4: Training Results
Metrics

Model Training Time Epochs Training Accuracy

Näıve-Bayes <1s - -

RNN 15.7 minutes 20 99.6%

CNN 1 minute 39 seconds 10 97.4%

5.2 Testing Results

All three models were tested on the same subsection of 5000 sentences from the Dakshinayan
Dataset. The accuracy and inference time for each model is summarized below:
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Table 5: Testing Results
Metrics

Model Accuracy Inference (per second)

Näıve-Bayes 94.2% 333.33

RNN 97.3% 1.20

CNN 95.8% 2.74

5.3 Benchmarking

The model performance was benchmarked with the method presented by Palakodety and
Khudabukhsh (2020) to test the relative accuracy on the same dataset. The benchmarking
model was tested for the Hindi language on the same testing dataset as models presented
in this paper. The model yielded an accuracy of 89.8%. Though this may be indicative of
higher accuracy in presented model, it may also stem from a difference in source of training
dataset, since transliteration is not a uniform process. The model proposed by Palakodety
and Khudabukhsh (2020) was trained on social media data, which may include different
transliteration features than the Wikipedia sourced dataset used for this paper.

6. Conclusion

The paper presents 3 models for the purpose of language detection each with different
accuracy as well as training and inference time. The analysis of the limitation and future
uses of each model is given below.

6.1 Limitations

The primary limitations of all three models are:

1. Vocabulary learnt from solely one source of data (Dakhshinayan, which is extracted
from Wikipedia). As a result, in case of encountering different styles of romanization
of same words, models may not be effective.

2. These models are limited in training to the Devanagari script and as a result future
transfer of weights to other languages may be less accurate

3. The dataset may also be a limiting factor in terms of the vocabulary size. Since model
is effectively trained on 90,000/4 = 22,500 words per language, while each language
actually contains over 100,000 unique words, it may not know sufficient words for
some real world uses (for example, highly technical language).

There are a few model specific limitations as well. Näıve-Bayes being probabilistic will
simply chose class with most features in training data set when encountering a sentence
with insufficient known words in a sentence. RNN having high training and low inference
time might be limited to cloud computing as opposed to edge-deployment. CNN has lower
inference and training time and inference but comprimises in accuracy.
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6.2 Future Scope

The three models have unique use cases. Näıve-Bayes, due to high inference time can be
used for real time detection purposes, such as in live translation or speech-to-text. RNN
due to higher accuracy can be used in more streamlined tasks including OCR, messaging
services, and search-optimization. CNN can be use interchangably with the two based on
situation-specific needs.

Further research can be used to expand on the work presented in this paper. Primarily,
expanding the model architectures to more languages, while mantaining similair levels of
accuracy and inference time. A hybrid RNN-CNN is also suggested which can use less
memory due to feed-forward layers and pooling (thus having higher inference time) while
mantaining bidirectionality for higher accuracy.
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